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Exact nonreflecting boundary conditions are derived for the time dependent
Maxwell equations in three space dimensions. These conditions hold on a spherical
surfaceB, outside of which the medium is assumed to be homogeneous, isotropic,
and source-free. They are local in time and nonlocaBpand they do not involve
high-order derivatives. Thus, they are easy to incorporate into finite difference or
finite element methods. These boundary conditions are similar to the exact nonre-
flecting boundary conditions for the scalar wave equation which yield high numerical
accuracy. © 1998 Academic Press

1. INTRODUCTION

We consider electromagnetic scattering in unbounded three-dimensional space. The s
tering region may contain obstacles, inhomogeneities, and nonlinearities. To treat it nun
rically we surround the region of interest by an artificial bounddnand we denote by
Q the computational domain inside At 5 we impose an exact nonreflecting boundary
condition upon the scattered field. This condition is local in time but nonloc#.dhis
the extension to Maxwell’s equations of the exact nonreflecting boundary condition whic
we have derived for the scalar wave equation [1]. We have shown [2] that it yields hig
accuracy in numerical computations.

Usually various approximate boundary conditions are used, which are local differenti
operators or3. Examples are the Mur [3] and the Peterson [4] conditions, which are th
generalizations to Maxwell’s equations of the absorbing boundary conditions derived for t
scalar wave equation by Engquist and Majda [5] and by Bayliss and Turkel [6]. A differer
approach has been to add an artificial absorbing layer outsidehich is supposed to
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2 This work was supported in part by the AFOSR, NSF, and ONR.
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328 GROTE AND KELLER

absorb outgoing waves [7]. Neither of these approaches leads to complete absorption
waves at all angles of incidence. To minimize the amount of reflection and to achieve ven
high accuracy, it is often necessary to m@éar from the region of interest, or to use a
thick absorbing layer. Both procedures are expensive in computer storage and executic
time. Moreover, with limited memory it may not be possible to achieve a desired accuracy

For the time-dependent scalar wave equation, Lindman [8] devised a boundary conditio
for use on a plane boundary. Randall [9] adapted it to the elastic wave equation. It require
solving the inhomogeneous wave equation on the boundary a number of times.

An exact nonreflecting boundary condition for the wave equation was proposed by Tinc
and Miksis [10]. It is based on a Kirchhoff integral representation of the solution ousside
and it was generalized to Maxwell’'s equations by De Moerloose and De Zutter [11]. Since
this boundary condition requires storing the solutiosdbr the amount of time it takes
a wave to propagate acro€s this approach is expensive in both storage and computer
resources.

It is to avoid these difficulties that we have developed this new boundary condition for
the special case whdgiis a sphere. It is derived in Section 2. In Section 3, we show how
to combine it with the finite difference method. Then in Section 4, we derive alternative
formulations, which are useful when the vector wave equation or the weak form of Maxwell’s
equations is used. In Section 5, we discuss higher order boundary conditions, and finall
in Section 6, we present numerical results which demonstrate the high accuracy of oL
boundary condition.

2. DERIVATION OF THE BOUNDARY CONDITIONS

We chooseB to be a sphere of raditR. In B, the region outsidés, the medium is
assumed to be linear, homogeneous, isotropic, of constant electric permittafigonstant
magnetic permeability, and of zero conductivity. In addition, we assume that-at0 the
scattered field is confined to the computational dongairin 5% the electric fieldE and
the magnetic fieldH satisfy Maxwell’s equations

oE
VxH=s— VxE=-p>. 2.1
=S vV Moot 2.1)

Both E andH vanish at = 0in 8%, soV -E = V- H = 0 att = 0. From (2.1) it follows
that they remain solenoidal there for all time:

V.-E=V-H=0. (2.2)
From (2.1) it also follows that botE andH satisfy the vector wave equation B

1 9%E 1 92H
coe TVXVxE=0 Go@

Herec = 1/./¢p.
We introduce the polar coordinates, ¢ and the unit vector§ 9, ¢. Next, we letYyn
denote theaxmth spherical harmonic

+VxVxH=0. (2.3)

Yam(9, ¢) = \/ (2n4: ;35:1';";1')! PIM(cost)e™, n=>0, Im <n. (2.4)
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The Yy, are orthonormal with respect to the inner product on thenit sphere. If the
problem considered is real, it is advantageous to use the real spherical harmonics, giver
the real and imaginary parts of (2.4) with a modified normalization constant.

Following [12, p. 170], we leU,m andV, denote the vector spherical harmonics

(VYom 1 Nom~ 1 3Yom -
Unm(?, #) = Jnn+D Jnin+1 { 0 0 sing ) ‘4 ’ (2:5)
. 1 ~1 3Yam~  0Yom »
Vom(@, ¢) =T X Upm = AGES) |:Sinz9 2 30 ¢:| . (2.6)

They form an orthonormal basis for the space of tangehtidilelds on the unit sphere with
respect to the., inner product [12]. They also satisfy the following useful equations for
any f(r):

V x (f(1)Vam) =

_«/n(n+1)f(r)Yf 19(rf(r))
r e

ar Unm, (2.7)

10(rf(r))

FxVx(frHVam = B Vim. (2.8)

To solve (2.1) inB*", we decompose the electromagnetic field into transverse electri
(TE) and transverse magnetic (TM) fields. The electric component of the TE multipole fiel
of order f, m) is given by

EN(, 9, ¢,t) = fam(r, HVam(D, ¢), (2.9)
where f,q, satisfies

192 9% 28 nn+1
Lol fom] = (—— 222y %) fom = O. (2.10)

The magnetic component of the TM multipole field of orderr) is given by

HIM(r, 9, ¢, 1) = gam(T, )V am(®, ¢), (2.11)

whereL[gnm] = O.

The TE and TM solutions form a complete set of solutions of Maxwell's equations ir
a source-free region [13, p. 746]. Therefore, the general electric and magnetic multipc
fields of order §, m) are obtained by combining (2.9) with the electric field associated with
(2.11), and combining (2.11) with the magnetic field associated with (2.9), respectively:

1 t
Enm(, 0, ¢, 1) = fam(r, O)Vam + gv X {Vnm/ Onm(r, S) ds} s (2-12)
0

1 t
Ham(r, 0, ¢, 1) = _;V X [Vnm/ fam(r, s) ds:l + Gnm(r, HViam. (2-13)
0

In B!, the total electromagnetic field is a superposition of multipole fields:

E=> > Ewm H=> > Hm (2.14)

n>1|ml<n n>1|ml<n
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By using (2.7) we see that the terms in (2.12) and (2.13) that inv@lve (V- - -) are
orthogonal toV . Thus from (2.14) we conclude that

fnm = (E7 Vnm), Onm = (H, Vnm)' (2-15)

The inner product involves integration with respectitand¢ on the sphere of radius
To obtain a boundary condition fét ., we first applyf x Vx to (2.13). We use (2.8)
and the fact tha¥/ o, jé fam is also a solution of (2.3) to get

PV x Hyp = — [ & LTy 190Gum)y, (2.16)
7

cat ™ r or

Next we differentiate (2.13) with respect toand simplify the result using (2.7). The
tangential components of the resulting equation yield

19HEn 1a(rf 19
198 _ /E_ Tom) o L8Gmy, 2.17)

c ot r ar c ot

Now we subtract (2.17) from (2.16) to get

1aH@n el /o 10
P XV x Hym— —ommm _ _ f22 (9 29 ey
Y T Tt Mr(8r+cat>[ mlUnm
1/0 10

T (5 + Eﬁ) [rInm]Vam. (2.18)

Similarly from (2.12) we derive the equation

19ERN 1(3 19

P XV x Egm— oo 2 (0 20 g v
Y E T ot r 8r+cat>[ oV

wl/o 10
+ \/;F <8—I’ + Ea) [r9nmlUnm. (2.19)

Equations (2.18) and (2.19) cannot yet be used as boundary conditions because their rigl
hand sides involve radial derivatives of the unknown functibpsandgnm. To eliminate
these derivatives we note thét, andgnn satisfy the differential equation (2.10) and that
they both vanish d@t= 0 forr > R. Equation (2.10) is the equation satisfied by the coefficient
of Ynm in the expansion of a solution of the scalar wave equation. Therefore &, f.m
satisfies the following boundary condition, which was derived in [1] for the wave equation
and used in [2]:

d 10
<8r + cat) [rfoml = —dn- 5D, r=R (2.20)
This is thenmth component of (2.6) in [2] wittt=d andz=1). Hered and > aren
component vectors.

The vector function/;,fm(t) = (yEI (), j =1,...,n, satisfies thdinear first-order
ordinary differential equation

1d

anﬁmm =AE ) + fam(R. Der,  9E (0) =0. (2.21)
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HereA, = {All} is the constamt x n matrix

—n(n+1)/(2R}) ifi =1,
Al = (n+iy(n+1-i)/@) ifi=j+1, (2.22)
0 otherwise

The constanh-component vectord, = {d,{} ande, = {eli} are defined as

Coonin+1j .
j_ N H) _
d = SRl i=1...,n, (2.23)
=1[1,0,...,0]". (2.24)
SinceLn[gnm] = 0, we also have
a 19 H
8[‘ + Eﬁ [ gnm] dn . 'l,bnm(t), r = R, (225)

where then-component vector functiom:r'fm(t) satisfies the ordinary differential equation

C dtzpnm(t) Anth (©) + gam(R, Den, R (0) = 0. (2.26)

Now, we use (2.20) and (2.25) to eliminate the radial derivative§,gfand gnm from
(2.18) and (2.19). Thus we rewrite (2.18) and (2.19) at R as

R 1oH@n [e 1
fFxVxHynm— E m — ;ﬁdn '1/’r|1zm(t)unm

at
1 H
+ 50 YinOVom, T =R, (2.27)

. 19ER 1
PV x Enm — at”m = =t pE (Vi

1
- \/gﬁdn p OUnm, T =R (2.28)

Finally, we obtain the boundary conditionrat= R by summing oven andmin (2.27) and
(2.28):

19H®"
PxvxH -2 \f ST Y o 45U

n>1|mj<n

TR Z > - Pin®Vam, T =R, (2.29)

n>1|m|<n
19E®R" 1
PxVxE—-Z= == dn - L DOV
X X c at Rn§>:l|m§|<:n n ,l/)nm() nm

\/7 Z Z dn - wnm(t)unm, r=R. (2.30)

n>1|ml<n
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The vector functiongs5(t) andep/! (1) in (2.29) and (2.30) satisfy the linear ordinary
differential equations (2.21) and (2.26), which can be written as follows by using (2.15):

1d

anﬁmm = AnpE () + (E® g, Vom€n,  ¥E,(0) = 0. (2.31)
1d
ann”ma) = At (O + (H® _r, Vam)en, !t (0) = 0. (2.32)

Each inner product in (2.31) and (2.32) involves two, not three, scalar inner products sinc
Vnm is purely tangential. Equations (2.29) and (2.30) are the boundary conditions whict
we sought. They are exact and ensure that no spurious reflections ofcUrtay involve

only first-order derivatives and can be incorporated easily into numerical methods.

The functionsf,,, andg,m satisfy the scalar wave equation and determine the electro-
magnetic field uniquely outsid®. It was shown in [2] that for smooth solutions of the scalar
wave equation, imposing the exact boundary conditidhgiarantees that the solutionin
coincides with the restriction t@ of the solution to the Cauchy problem in the unbounded
domain. Therefore for smooth data, the solution to the initial boundary value problem inside
Q with (2.29) or (2.30) imposed & is unique and coincides with the restrictionseoof
the electromagnetic field in the unbounded domain. It is also well posed with respect tc
perturbations in the initial conditions.

These boundary conditions do not require saving past valuésasfH. Instead they
involve the two functionapfm(t) and 1/Jr'ﬂm(t). The amount of memory needed to store
them, about4,/3) N3 scalar values, is negligible when compared to the storage required for
E andH. Most of the extra work involved in applying the boundary condition results from
computing the inner products BfandH with Vn,in (2.31) and (2.32) and from computing
the right-hand sides of (2.29) and (2.30).

To compute the Fourier components in (2.29) or (2.30), it is not necessary to computs
O(N?) inner products over the entire sphere. Indeed, since the vector spherical harmonic
Vnm Separate i andg, it is sufficient to comput®© (N) inner products with casng) and
sin(mg) over the sphere and then to comp@éN?) one-dimensionahner products i
over [Q 7r]. The same trick can be used to calculate the sumsmasdm on the right of
(2.29) and (2.30).

3. THE FINITE DIFFERENCE METHOD

We shall now show how the nonreflecting boundary condition fits into the finite difference
time domain method (FDTD). First proposed by Yee [14], this popular method staggers
bothE andH in time and space and thereby achieves second-order accuracy using currel
values only. Due to the nature of the Yee scheme, the boundary condition is needed only f
one of the two electromagnetic field components. We choose to applEitthusE™" is
known atr = R— Ar andr = R, whereadH'®"is known atr = R — Ar /2. The boundary
condition is necessary to advang&" atr = R, since Maxwell's equations (2.1) would
require radial derivatives dfi'®, whose finite difference approximation involves unknown
values ofH"@" outsideB. Thus we shall use (2.30) to advari€8" atr = R from timet to
timet + At. To do so, we apply (2.30) &=t + At/2 andr = R— Ar /2, and approximate
the first-order derivatives on the left by centered finite differences [15, Section 3.7].



NONREFLECTING BOUNDARY CONDITIONS 333

The right side of (2.30) involves infinite sums which are truncated at a finite Wue
requires the values @f (1) andyp/! (1) att = t + At/2. These are computed concurrently
with the solution insid&2, using the linear ordinary differential equations (2.31) and (2.32).
Theinner productsin (2.31) and (2.32) are computed over the spheR— Ar /2 using the
fourth-order Simpson rule. To solve (2.31) and (2.32) numerically, we opt for the trapezoid
rule [16, Sec. 11.7], because the eigenvalues of the matAgdge in the left half of the
complex plane [2]. Since the trapezoidal rule is unconditionally stable, there is no restricti
on the time-step in the integration of (2.31) and (2.32). The work required in solving th
linear systems (2.31) and (2.32) is negligible, because the mafjcare very small and
remain constant. The trapezoidal rule approximation of (2.31) is

At At
(l - ?An> "/’Em(thrl/Z) = (' + 7An> 'l/’Em(tkfl/Z) + At (Ek|R7Ar/21 Vnm) €h, (3-1)

whereEK atr = R— Ar/2is the average & atr = R— Ar andr = R. The trapezoidal
rule approximation of (2.32) is

At At
<| - 7An) Phtern2) = (I + 7An) P (tk-1/2)

N
+ % (H2laoarz + Y lpoar2. Vom) €. (3:2)

The complete algorithm proceeds as follows:

0. Initialize E att = 0 andH att = At/2, and setp", = 0 ande| = 0 att = At/2.

1. ComputeE atty = ty_1 + At at all inner points of2 using (2.1).

2. ComputeE™" att, andr = R using (2.30) applied at = R — Ar/2 andtc_1/,=
tke1 + At/2.

3. ComputeH atty1/2 using (2.1).

4. Computez/;r'fm andqp:'m atte,1/2 using (3.1) and (3.2), respectively, and return to 1.

Although the artificial boundary must be spherical, the boundary condition is not tied t
any coordinate system, and the grid used inSid=n be arbitrary. See [17] for how to fit a
Cartesian mesh to curvilinear coordinates, or [18] for a structured spherical mesh withc
singularities.

4. ALTERNATIVE FORMULATIONS

We shall now show how to reduce the work involved in forming the inner products ir
(2.31)—(2.32). This slight modification will also render the boundary condition particularly
useful when the problem is formulated in termsEflor H) only and the vector wave
equation (2.2) is used 2. Next, we shall present an alternative formulation of the boundary
condition, which fits naturally into the weak formulation of the problem, and therefore i
ideally suited for the finite element method.

The work involved in forming the inner products wif" andH'"in (2.31)—(2.32) can
be reduced. Indeed, if we compuited;Enn, in (2.12) and use (2.7), we see that

= Jnn+1)
P 8:”‘=— R gmYam =R (4.1)
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By taking the inner product of (4.1) with,,, we get

- R (., r=R (4.2)
gnm— m 8t7 nm | » - . .

Therefore, we can computg, with one scalar inner product. The time derivative in (4.2)
can be replaced hyangentialspatial derivatives by using (2.1) to yield

R
SN e

-

VxH,Ym), I=R (4.3)

Similarly,

f mR.(p.0H r
nm—m ata nm |»

= —\/%(f -V x E, Ynm), r=R. (45)

Equations (4.2) and (4.5) are particularly useful when the vector wave equation is use
inside$2 and the problem is written in terms Bf(or H) only. Then the boundary condition
(2.30) can be used, witl(, Vnnn) in (2.32) replaced by the right side of (4.2). Thus applying
the boundary condition & involves only tangential derivatives &f

The boundary conditions (2.29) and (2.30) fit naturally into finite difference methods.
We shall now show how they can be reformulated easily to accommodate finite elemer
methods. To derive the weak form of Maxwell’'s equations, both Egs. (2.1) are multiplied
by test functions and integrated ov@r Integration by parts then introduces terms of the
formf x E orf x H overB (see [19, 20]), which we shall now express in terms of known
quantities.

We begin by introducing

=R, (4.4)

t t
TE (1) = /O YE(sds  WH (1) = /0 PH(9)ds. .6)

Therefore@E andW¥! satisfy the same ordinary differential equations/gs, andap!!
but with f,, andg,m replaced by their time integrals. By integrating (4.2) and (4.5) in time,
we conclude tha® £ is the solution of

1d R
anffm(t) = A5 (D) + \/ﬁ(r ‘Hlr—r, Yom&,  ¥r,(0) =0,  (4.7)
and that® ! is the solution of
d o+ H eR 2 H
E&\an(t) == An\IInm(t) - \/ﬁ(r . E|r:R, Ynm)en, \Ilnm(O) == 0 (48)

We note that the inner productsin (4.7) and (4.8) involve only scalar inner products with the
radial components dE andH. Next, we integrate (2.29), and (2.30) with respect to time.
The right sides remain the same, wiftf, and! replaced by®E and¥! = The left
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sides can be reformulated easily using (2.1), which leads to the alternative formulation
the nonreflecting boundary conditionrat= R:

6F x E— TH = \f 573 - WU

n>1|m|<n

1
+ = S T OVam, 1 =R, (4.9)

n>1|ml<n

ufb x H 4+ — Etan Z Z d, - Em(t)vnm

n>l Im|<n
\/7 S d THOUnm, 1 =R (4.10)
n>1 |m|<n

Either (4.9) or (4.10) can be used in the weak formulation of the problem iski&nce
they do not involve any derivatives & or H, they are particularly easy to combine with
a numerical method. When the method of lines is used, the vector of unknowns involv
the values oE andH at the interior nodes, together with the unknown functimﬁn(t)
and\IlH m(1), which are advanced concurrently using (4.7) and (4.8). It is quite remarkabl
that the two scalar quantiti€s E andf - H suffice to impose the nonreflecting boundary
condition.

5. HIGHER ORDER BOUNDARY CONDITIONS

In practice, the infinite sums in (2.29) and (2.30) must be truncated at some finite val
N. For the modes > N, the truncated boundary condition fdrreduces to

1oH™"
I’XVXH—E o0 =0. (5.1)

This is the time-dependent counterpart of the first-order approximate boundary conditi
derived by Peterson [4], which annihilates the leading term in the large distance expans
of the electromagnetic field [21]. The truncatior\atntroduces an erro® (R~%) in modes
with n > N. To reduce that error, without affecting the modaes: N, we transform the
second-order Peterson condition [4] to the time domain to obtain

1 2 19H®@"
{rx(Vx)—E%—F}{rxVxH—Eaat }:O, r=R. (5.2)

The error in (5.2) iD(R~°), which is smaller than the err@(R2) in (5.1) forR > 1.

To take advantage of this smaller error, we apply the ope(atorVx) — ¢ 13 — 2/r)
to both sides of (2.29) and (2.30). The resulting boundary conditions are still exact, b
when truncated at = N they yield (5.2) for the modes with > N, with error O(R™5).
We shall carry out the calculations for the comportépt, which satisfies (2.18). To do so
we derive the following formula, similar to (2.8), which holds for ahgr ):

P x Vx (f(HUpm) = —r} 8(r;r(r))

Unm- (5.3)
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By using (2.8) and (5.3) we obtain from (2.18)

10 2 19H2N
P (V) — =2 U v Hpy — = O
{X(X) c ot r}{x im0t }

. el 3+13+2 3+13 [rfon]U
“Vour\ar "cat  r)\or ' cat nmi=nm

1/0 10 2 o 1090
+ P’ <§ + oot + F) (E + Eﬁ) [rgnmlVam. (5.4)

In [2, Section 5] it was shown that the exact second-order boundary conditidp.for, t)
is

9 18 2\/9 19 - .
(aT*E&*F) (aT*Eﬁ) [ford = dn- 50, T=R  (55)

where the vector function&fm(t) satisfy (2.21), and the constant vectdrs= {&,11} are
defined by

dézw, i=1...n (5.6)
We note thaﬂi = 0 and, hence, that the terms with= 1 in the sums vanish. Therefore,
the second-order absorbing boundary condition (5.2) is exact for the multipoles with

We use (5.5) in (5.4), set= R, and finally sum oven andm to obtain the exact non-
reflecting boundary condition. The exact second-order boundary condition for the magneti
field atr = Ris

19 2 10HE
{fx(Vx)——}{foxH—C nm}

cat R ot
e 1 ~ 1 ~
- \[ R 2 O Yam®Unm+ 25 > D o $rn®Vom (5.7)
® n>2 |mj<n n>2 |m|<n

The exact second-order boundary condition for the electric field=aR is

. 10 2 . 19E®n
Frx(Vx) — —— — — fxVxE-—-—

c ot R c ot
_ 1 Ay - YE (HV pl dn - " (DU 5.8
—@ZZ n'¢nm() nm — ;ﬁzz n'wnm() nm- ()
n>2 |m|<n n>2 |m|j<n

Here the vector functiongt _(t) andy ! (1) satisfy the same ordinary differential equations
(2.31) and (2.32). The constant vectofsare given by (5.6), by (2.24), and the constant
matricesA, by (2.22).

The same procedure can be adapted easily to accommodate modifications of (5.2), whi
may possess certain practical advantages [22]. If the radiisntl the temporal frequency
remain fixed, the error introduced Atby imposing (5.2) on the multipold ,,, increases
with increasingn [22].
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6. NUMERICAL RESULTS

We shall now combine the finite difference method with the nonreflecting boundar
condition, as described in Section 3, and apply it to a model problem for which the exa
solution is known. In Ref. [2], we have presented examples which show the accuracy
this method for the scalar wave equation, and we have discussed storage requirements
other computational issues.

We consider an off-centered radiating electric dipole locat&kat(0, 0, zy), z, > 0, at
distancezy from the origin. The dipole is aligned alorrgso that its moment points along
the positivez-axis. Its time dependence, shown in Fig. 1, is a Gaussian pulse centered
t =to:

0, t <O,
Pt) = { ae~ 0o  0<t <2, (6.1)
O, t > Zto.

We seta =107° and choose so thatP(t) is equal to machine precision ait= 0 and
t = 2to.

Since this problem is symmetric about thaxis, the electromagnetic field has only three
nonvanishing componentgi(r, 6, t) = E'f + E?9 andH(r, 6,t) = H?¢. Furthermore,
the exact solution can be found in [24, p. 152]. We impose the tangential comg®heht

P()

1
0 5 10 15
t [ns}

|
N

FIG. 1. The time dependende(t) of the dipole source.



338 GROTE AND KELLER

0=0

6 =180°

FIG. 2. The computational domaif2 is shown drawn to scale, witly = 0.5 [m] andR = 1 [m]. The dipole
source is located & = (0, 0, z,), with z, = 0.4 [m].

the exact solution as a boundary condition at ro and calculate its propagation outwards
up to the artificial boundary = R. Because of the inherent symmetry, the computational
domainQ can be reduced to the two-dimensional regigr r < R, 0 <60 < 7, shownin
Fig. 2. Inside2 we use polar coordinates and a uniform meghand6. The Yee algorithm

in polar coordinates is described in [23] or [15, pp. 378-381]. Weeset0.5[m], R=1

[M], zo = 0.4 [m], ¢ = 2.998 x 10° [m/s], andty = 3 [ns].

We shall compare the numerical solution using (2.30), where the sums are trunddted at
with that obtained using the first-order condition (5.1). We denote the former by NBC(
where N indicates the upper limit in the sums, and the latter by P1 to acknowledge [4].
We recall that P1 is identical to NBC(0). The boundary condition (2.30) is implemented as
described in Section 3, albeit due to the radial symmeify,(t) is identically zero.

In Fig. 3, we check the accuracy of our numerical method. The maximal error in the
L,-norm over the time interval [0, 15], nanoseconds is shown versus the mesh paramet
h = Ar, for the following sequence of meshes: 220, 30 x 180, 40 x 240, 60 x 360,
and 80x 480. We observe the expected second-order convergence of the full scheme usir
NBC(20) as the mesh is refined. This indicates that setting 20 ensures that the error
introduced at the artificial boundary is smaller than that of the numerical scheme. Howevel
the error in the numerical solution obtained with P1 does not decrease as the mesh is refine
indicating that the error introduced by using P1 dominates the computation. Indeed, th
numerical solution does not converge to the solution of the original problem, but insteac
converges to the solution of a different problem with P1 imposefl. avhen NBC{N)
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FIG. 3. The maximal error in thé., norm over the time interval [0, 15] nanoseconds is shown versus the
mesh parametdr = Ar: E" (left) andH" (right).

is implemented numericallyN = N(h) can be chosen high enough to reduce the error
introduced at3 below the discretization error of the numerical method insidevithout
moving the artificial boundary farther away from the scatterer. With) chosen in this
way, the numerical method will converge to the correct solution tends to zero.

Next, we shall compare the numerical solutions, obtained using P1 and NBC(20), wi
the exact solution at three different locations well insfdeatr =0.75 [m]: Q1 (0 =
45°), Q2 (8 = 135), andQ3 ( = 170°). The inner and outer radii remain at their current
locationsrg = 0.5 [m], andR = 1 [m], and we choose a 60 360 mesh inside&2.

In Fig. 4, the¢-component of the magnetic field is shown at the first locatipn
The numerical solution obtained with NBC(20) is hardly distinguishable from the exac
solution. While the relative error due to the P1 boundary condition is only a few percer
this seemingly accurate behavior is deceptive.

Indeed thesdocally small reflections travel back into the computational domain and
contaminate the solution everywhere insfdein particular in regions where the solution
is of much lesser magnitude. To demonstrate this point, we select the next location fartl
from the source af,, where the electromagnetic field is much weaker. gFmponent
of the magnetic field aQ, is shown in Fig. 5, and again it agrees completely with the
numerical solution obtained using NBC(20). The solution obtained using P1 agrees wi
the exact solution for a finite time. It then diverges from it, as the spurious reflection due
the imposition of P1 reaches this location.

This effect is even more dramatic if we choose a location close to the south [§@ielat
Fig. 6, thep-component of the magnetic field is shown@4. Here the spurious reflection
due to the P1 boundary conditionléger than the original signalThe solution obtained
using NBC(20) agrees well with the exact solution.

Finally, we setR = 0.6 [m] to study the performance of the boundary conditions as the
outer boundary is moved closer to the inner one. The mesh size remains identical, so 1
the mesh has 12 360 points. In Fig. 7, the-component of the electric field is shown below
the south pole of the inner sphere at the severe test locatierl80 andr = 0.55 [m].
Again, the numerical solution obtained using NBC(20) agrees with the exact solution; tr
demonstrates the robustness of the exact boundary condition with respect to the locat
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of the artificial boundary. The numerical solution obtained with P1 agrees with the exact
solution for a short time. It then strongly overshoots, oscillates a few times, and slowly
starts to approach zero. This suggests that using the exact nonreflecting boundary conditi
may be useful even in calculations where the transient behavior is of no interest, since th
numerical solution may reach the final steady state much faster.

7. CONCLUSION

We have, derived an exact boundary condition for the time-dependent Maxwell equation
in three space dimensions. It holds at the surface of a sphere and is local in time. It is give
by (2.29) and (2.30) and fits naturally into standard finite difference methods. An alternative
formulation, more suitable for finite element methods, is given by (4.9) and (4.10). Both
boundary conditions require little extra storage and computer time and can reduce the err
introduced by the artificial boundary below the discretization error due to the numerical
method, regardless of the radius of the outer boundary. For fields which contain modes wit
n > N, greater accuracy is provided by the higher order boundary conditions of Section 5
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